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ABSTRACT
Growing evidence indicates that brain development varies as a function of family socioeconomic status (SES). Numer-
ous studies have demonstrated that children from low-SES backgrounds have thinner cortex than children from 
higher-SES backgrounds. A recent study in a large developmental sample found widespread associations between 
lower SES and greater cortical T1w/T2w ratio—thought to be an indirect proxy for cortical myelin. We evaluated the 
association of family income with cortical T1w/T2w ratio as a function of age in the Human Connectome Project in 
Development sample of 989 youth aged 8-21 years. We observed no associations between family income and T1w/
T2w ratio that were significant after corrections for multiple comparisons at the region, network, or whole-brain level. 
Region of practical equivalence (ROPE) analyses were also consistent with the absence of an association between 
family income and T1w/T2w ratio. We discuss potential methodological sources of inconsistency between this and 
the previous study examining the same question. While the question of whether family income may influence cortical 
myelin development remains, these null results may indicate that the association between SES and cortical myelin 
development may not be as strong as with other aspects of brain structure.
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1.  INTRODUCTION

Growing evidence indicates that brain development var-
ies as a function of family socioeconomic status (SES) 
(Hair et al., 2015; Hanson et al., 2013; Johnson et al., 
2016; Mackey et al., 2015; Noble et al., 2015; Rakesh & 
Whittle, 2021). SES has been associated consistently 
with reduced thickness and surface area of cortical 
regions (Machlin et al., 2020; Noble et al., 2015; Sanders 
et al., 2022) and smaller volume of subcortical regions 
(Decker et al., 2020; Dufford et al., 2019; Ellwood-Lowe 
et al., 2018; Hair et al., 2015; Jenkins et al., 2020; Luby 

et al., 2013). Some studies have observed differences in 
the structural integrity of white matter tracts as a func-
tion of childhood SES (Ozernov-Palchik et  al., 2019; 
Rosen, Sheridan, Sambrook, Meltzoff, et al., 2018), but 
investigation of differences in cortical myelination have 
been lacking. Recently, however, several groups have 
observed associations between SES and indices of cor-
tical myelin content (Norbom et al., 2022; Ziegler et al., 
2020), although the findings are in opposing directions. 
Characterizing the associations between SES and corti-
cal myelin content and evaluating the extent to which 
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any associations reflect deviations from typical age-
related patterns may illuminate the precise nature of 
neurodevelopmental heterogeneity associated with 
socioeconomic disparities.

The ratio of T1-weighted to T2-weighted MRI images 
(T1w/T2w) can be used to indirectly estimate cortical myelin 
content (Glasser & Essen, 2011). T1w/T2w is correlated 
with both histological measures of myelin and other MRI 
indices of cortical myelin content (Glasser & Essen, 2011; 
Glasser et al., 2014; Shams et al., 2019). However, because 
MR signals are sensitive to properties like iron, cell density, 
and water content, in addition to myelin, the T1w/T2w ratio, 
while correlated with myelin content, represents a mix of 
these properties (Baum et  al., 2022; Carey et  al., 2018; 
Glasser et al., 2022). T1w/T2w ratio increases from child-
hood to adulthood, following the opposite trajectory from 
cortical thickness (Baum et al., 2022). Decreases in cortical 
thickness from childhood through early adulthood are a 
normative developmental process (Frangou et  al., 2022). 
However, recent work has suggested that the developmen-
tal trajectory of cortical thinning showing reductions over 
time actually reflects greater myelination of the cortex, 
rather than thinning of the gray matter due to the influence 
of myelination on the contrast between gray and white 
matter in the cortex (Natu et al., 2019), a pattern long pos-
tulated to contribute to age-related cortical thinning (Sowell 
et al., 2004). Age-related patterns of T1w/T2w ratio across 
the brain appear similar with and without controls for corti-
cal thickness, suggesting that T1w/T2w myelin and cortical 
thickness reflect dissociable mechanisms of structural 
neurodevelopment (Baum et al., 2022). Thus, the associa-
tion between SES and T1w/T2w ratio may be similarly dis-
sociable from the association between SES and cortical 
thickness and surface area.

Differences in cortical myelin content may be an age-
invariant consequence of low SES as has been sug-
gested for other measures of structural neurodevelopment 
(Rakesh et al., 2023), or it may reflect altered neurodevel-
opment, and thus impact the trajectory of myelin devel-
opment. The two existing studies on this topic have 
produced conflicting findings. One study using an accel-
erated longitudinal design and magnetization transfer—a 
different method to quantify cortical myelin content—
found that higher neighborhood-level economic disad-
vantage was associated with slower myelin growth 
(Ziegler et  al., 2020). Another recent study in a large 
(n  =  502) developmental sample aged 3-21  years old 
found widespread associations between lower SES 
(measured as a composite of family income, parental 
education, and parental occupation) and greater T1w/

T2w ratio across the brain, independent of age, suggest-
ing that low SES was associated either with greater cor-
tical myelin content across development but not with 
differences in the rate of myelination (Norbom et  al., 
2022). A third study, once again using magnetization 
transfer, found overall higher myelin content in the senso-
rimotor network but lower myelin content in the temporal 
lobe associated with childhood SES in older adults 
(Loued-Khenissi et al., 2022). These studies probed dif-
ferent aspects of the SES construct and inferred cortical 
myelination based on different neuroimaging metrics. 
Thus, while discrepancies in the findings are not surpris-
ing, they nonetheless suggest that there may not be a 
broad association between SES and cortical myelin 
development that is robust to these conceptual and 
methodological differences, and that further investigation 
is necessary to clarify which aspects of SES influence 
which measures of cortical myelination development.

While cross-sectional data are limited with respect to 
the conclusions that can be drawn about developmental 
processes, statistical methods that characterize age-
related patterns based on multivariate patterns (e.g., 
“Brain age”) can be useful in making neurodevelopmental 
inferences with considerable predictive accuracy (Cole 
et al., 2017; Dosenbach et al., 2010; Franke et al., 2010). 
In this study, we use gaussian process regression to pro-
vide statistical inferences about whether T1w/T2w ratio 
development is accelerated or delayed with respect to 
the age-typical localized T1w/T2w ratio, based on a 
model developed in a training dataset.

We examined the association between family income, 
one measure of SES, and T1w/T2w myelin content in a 
sample of 989 youth aged 8-21 years. We extend the prior 
studies on this topic that have produced conflicting find-
ings by examining whether family income is associated 
with deviations from normative, nonlinear age curves in 
T1w/T2w ratio. Although conducted in a cross-sectional 
sample, this analytic approach evaluates whether associa-
tions of family income with T1w/T2w ratio reflect acceler-
ated or delayed developmental trajectories.

2.  METHODS

All methods and analyses were preregistered (https://osf​
.io​/duvbj).

2.1.  Sample

The present sample consists of 925 8-21 year old partic-
ipants (50.3% female) in the Human Connectome Project 
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in Development (HCP-D). Participants were recruited 
across four sites: Harvard University, University of 
California-Los Angeles, University of Minnesota, and 
Washington University in St. Louis. Exclusion criteria for 
recruitment included (i) premature birth (<37 weeks ges-
tation); (ii) serious neurological condition (e.g., stroke, 
cerebral palsy); (iii) serious endocrine condition (e.g., pre-
cocious puberty, untreated growth hormone deficiency); 
(iv) long-term use of immunosuppressants or steroids; (v) 
any history of serious head injury; (vi) hospitalization 
>2 days for certain physical or psychiatric conditions or 
substance use; (vii) treatment >12 months for psychiatric 
conditions; (viii) claustrophobia; or (ix) pregnancy. Partic-
ipants provided written informed consent and assent and 
parents of participants under 18 years provided written 
informed consent for their child’s participation. All proce-
dures were approved by a central Institutional Review 
Board administered at Washington University in St. Louis 
(IRB #201603135) and were performed in accordance 
with the ethical standards as outlined in the 1964 Decla-
ration of Helsinki.

Participants were included if their T1w/T2w ratio maps 
were of sufficient quality based on manual inspection of 
scalar properties and the accuracy of image segmenta-
tion, as determined by trained experts in the HCP-D con-
sortium (Elam et  al., 2021). Following cortical surface 
reconstruction, a single experienced individual performed 
a “SurfaceQC” review of the white and gray matter sur-
face placement, informed by the T1w/T2w ratio maps 
(Elam et al., 2021; Glasser & Essen, 2011). Participants 
with more than minor (focal) issues were flagged for pos-
sible future editing and excluded from the cohort ana-
lyzed for the current study. This “SurfaceQC” review of 
the HCP-D data revealed some degradation of the accu-
racy of surface placement relative to expectations estab-
lished by the HCP Young Adult project, which were traced 
to artifacts in the longer echos. Therefore, to reduce the 
prevalence of surface segmentation errors in this devel-
opmental sample, we used the mean of the shortest two 
echos (i.e., excluded the longest two of four echos) as the 
T1w input to the HCP Pipelines (Elam et al., 2021).

2.2.  Measures

2.2.1.  Family income

Family income was operationalized as the natural log of 
the income-to-needs ratio, which is calculated by dividing 
parent-reported family income by the 2017 federal pov-
erty line based on the family size reported by the parent. 

The estimate of family income was entered into a text box 
in response to the prompt, “Please state your TOTAL 
COMBINED FAMILY INCOME for the past 12 months. 
This should include income (before taxes and deductions) 
from all sources, wages, rent from properties, social secu-
rity, disability and/or veteran’s benefits, unemployment 
benefits, workman’s compensation, help from relatives 
(including child payments and alimony), and so on.” To 
limit the influence of incomes at the extreme ends of the 
distribution, incomes greater than $300,000 were recoded 
as $300,000 (n  =  71). Incomes less than $15,000 were 
recoded as $15,000 (n = 44). Consistent with prior work 
on childhood SES and neurodevelopment (Noble et  al., 
2015; Rosen, Sheridan, Sambrook, Peverill, et al., 2018), 
we used the natural log of income-to-needs ratio to reflect 
that associations of income with neural outcomes are 
non-linear with stronger associations at the lower end of 
the income distribution.

For supplemental analyses that were not part of the 
original preregistration (https://osf​.io​/duvbj), we also con-
ducted analyses using maternal education as a measure 
of SES. Maternal education was defined as the highest 
educational level achieved by the child’s mother. We also 
computed a composite measure of SES by standardizing 
both parental education and log income-to-needs ratio 
and computing the average.

2.2.2.  T1w/T2w ratio

T1w/T2w ratio was estimated by taking the ratio between 
high-resolution (0.8 mm isotropic) T1w and T2w voxels 
mapped to the cortical surface using methods developed 
by the HCP consortium (Glasser & Essen, 2011; Glasser 
et al., 2013, 2014; Marcus et al., 2011). Division of the 
T1w image by the T2w image mathematically cancels the 
signal intensity bias related to the sensitivity profile of the 
radio frequency receiver coils, and enhances the contrast 
of cortical myelin content (Glasser & Essen, 2011). We 
also applied an empirically validated “pseudo-transmit 
field” correction to mitigate B1+ bias in individual T1w/
T2w ratio maps, thereby reducing potentially spurious 
age-related differences in T1w/T2w ratio (Baum et  al., 
2022; Glasser et al., 2022).

As described in detail in previous publications (Baum 
et al., 2022; Glasser et al., 2022), the B1+ correction relies 
on computing a pseudo-transmit field. First, a reference 
T1w/T2w map was generated at the group level by find-
ing the scaling between the group average pseudo-
transmit field and group average T1w/T2w map that 
minimizes the correlated left-right differences between 
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the two maps (i.e., the clearly spurious left-right asymme-
tries). This reference group map was used to correct the 
individual maps. For the individual correction, the 
pseudo-transmit map was scaled to minimize the cor-
related differences between the individual’s T1w/T2w 
map and the reference T1w/T2w map and the pseudo-
transmit map (which includes all differences, not simply 
left-right ones, and is more robust at the individual level). 
Before estimating this correction, any residual B1– effects 
because of subject head motion between the T1w and 
T2w images were also removed using the scanner-
computed B1– receive field. The pseudo-transmit field 
requires regularization by thresholding regions of T2*-
related signal loss combined with spatial smoothing (with 
compensation for intensity changes induced by smooth-
ing); it is then scaled to equal 1 at the value where the 
GRE/SE ratio corresponds to the flip angle prescribed by 
the scanner, a reference value that is determined at the 
group level.

Individual T1w/T2w ratio maps were parcellated into 
regions based on the HCP multimodal atlas (Glasser 
et  al., 2016) and into networks based on the Cole-
Anticevic atlas (Ji et al., 2019). The PostFreeSurfer pipe-
line produced cortical surface models in GIFTI format and 
surface-related data in CIFTI format, and each subject’s 
cortical surface was then registered to a common 32k_
FS_LR mesh using “MSMAll” areal-feature-based corti-
cal surface registration, which is a multimodal registration 
constrained by cortical T1w/T2w maps and resting-state 
network maps (Glasser et al., 2016).

2.2.3.  Modeling deviations from normative T1w/T2w development

We applied normative modeling using gaussian process 
regression to provide statistical inferences at the level of 
the individuals with respect to normative patterns of T1w/
T2w ratio development. A key advantage of this approach 
is that in addition to fitting potentially non-linear relation-
ships between age and T1w/T2w ratio, it also provides 
regional estimates of the expected variation in the rela-
tionship between age and T1w/T2w ratio (normative vari-
ance) as well as estimates of uncertainty in this variance. 
Both normative variance and uncertainty are learned 
from a training subset. Then, for each participant (i) in the 
test subset, we generate the predicted brain feature (ŷij) 
and combine it with the true value of the brain feature (yij), 
the predictive uncertainty (σij), and the normative variance 
(σnj) to create a z-score that quantifies deviation from nor-
mative neurodevelopment (Marquand et al., 2019). Unlike 
a residual, which is the difference between the predicted 

and actual value (ŷij - yij), the difference score is computed 
as:

ŷij  −  yij
σij+ σnj

We then tested whether deviations from normative 
T1w/T2w ratio development are associated with log 
income-to-needs ratio.

2.3.  Analyses

For all analyses, generalized additive models with age 
splines were used (Wood, 2011) using the mgcv package 
in R (Wood, 2017) to estimate both linear and nonlinear 
associations between log income-to-needs ratio and T1w/
T2w ratio development, both continuous variables. In the 
first analysis, log income-to-needs ratio was the indepen-
dent variable and T1w/T2w ratio was the dependent vari-
able. Participant age, sex, scanner, and seven nuisance 
regressors for B1+ correction (the scanner transmit volt-
age, the mean of the pseudotransmit map, T2* dropout 
threshold, smoothing FWHM, correction factor for smooth-
ing’s effect on the pseudotransmit field’s intensities, the 
slope parameter of the correction, and a corrected T1w/
T2w lateral ventricular CSF regressor) were included as 
covariates. The correlations between those seven nui-
sance regressors and log income-to-needs ratio ranged 
from r = -.16 to r = .03. In the second analysis, the depen-
dent variable was deviations from normative T1w/T2w 
development, a continuous variable in arbitrary units. 
Covariates were participant sex and scanner type.

Analyses were conducted in parallel for each region in 
the brain, parcellated according to the HCP-multimodal 
atlas and each network in the brain, parcellated accord-
ing to the Cole-Anticevic atlas. Holm’s adjustment (Holm, 
1979) was used for multiple comparison correction 
across regions and networks. Bayesian parameter esti-
mation using the brms package in R (Bürkner et  al., 
2017) was used to guide inference on the likelihood that 
observed null age effects reflected a true underlying null 
distribution using a region of practical equivalence 
(ROPE) approach (Kruschke, 2011). For the ROPE analy-
ses, a standardized regression coefficient smaller than 
|.06| was considered practically equivalent to 0. This 
effect size was chosen because smaller effects are 
unlikely to be particularly meaningful at the population 
level or replicable, even in large samples (Marek et al., 
2022). A sample size of around 9,500 is required to 
detect an effect of that size with multiple comparison 
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corrections or a sample size of 2,200 for uncorrected 
p < .05. As noted above, all analyses were repeated using 
maternal education as a second metric of SES, and for a 
third time using a composite measure of SES. These 
analyses were not pre-registered but followed the identi-
cal structure of pre-registered analyses for income-to-
needs. All analytic codes are available at https://github​
.com​/dgweissman​/hcpd​_adversity.

3.  RESULTS

The sample had a wide (8-22 years) and uniform age dis-
tribution (Mean  =  14.40, SD  =  3.99). While the income 
distribution of the sample was higher (median of $110,000 
per year) than what would be nationally representative, 
the distribution of income-to-needs ratio was quite wide 
(0.12-14.7). Fifty-seven participants (6.1%) had incomes 
below the federal poverty line, and 148 participants (16%) 
had incomes below 200% of the federal poverty line. A 
range of education levels were also represented in the 
sample (see Table 1).

The associations between family income and T1w/
T2w ratio were mostly weakly negative but were not sta-
tistically significant. There were no associations between 
SES, measured by log income-to-needs ratio, and T1w/
T2w ratio that were significant after corrections for multi-
ple comparisons at the region (Glasser parcels, Fig. 1), 

network (Table  2), or whole-brain level (B  =  -.00263, 
SE = .00259, t = -1.02, p = .310). The strongest negative 
associations between SES and T1w/T2w ratio were 
observed in the right ventromedial visual cortex (t = -2.9, 
uncorrected p = .004) and left medial belt (t = -2.8, uncor-
rected p = .005). Notably, if the B1+ covariates were not 
included in analyses, the association between log 
income-to-needs ratio and whole-brain T1w/T2w ratio 
was larger though still only marginally significant 
(B = -.00583, SE = .00311, t = -1.88, p = .061). Neither 
parcel- nor network-level associations between log 
income-to-needs ratio and T1w/T2w ratio were signifi-
cant after multiple comparison corrections, even without 
inclusion of B1+ covariates.

Based on ROPE analyses, the majority (>76%) of pos-
terior estimates of the association between log income-
to-needs ratio and network-level T1w/T2w ratio fell within 
ROPE intervals considered effectively zero for all net-
works. The majority (>50%) of posterior estimates of the 
association between log income-to-needs ratio and 
parcel-level T1w/T2w ratio fell within ROPE intervals con-
sidered effectively zero for 355 out of 360 parcels. For 5 
parcels (including ventromedial visual cortex and left 
medial belt), the results were inconclusive. While not sig-
nificantly different from 0, their association with log 
income-to-needs ratio also cannot be considered practi-
cally equivalent to 0.

Similarly, associations with SES measured by mater-
nal education were mostly weak, negative, and none 
were statistically significant after corrections for multiple 
comparisons at the region, network, or whole-brain level 
(B = -.00131, SE = .00089, t = -1.47, p = .141). The stron-
gest negative associations between SES and T1w/T2w 
ratio were observed in the right dorsal anterior cingulate 
cortex (Area 24dd; t = -3.05, uncorrected p = .002) and 
left ventral visual cortex (VVC; t  =  -2.66, uncorrected 
p = .008). Notably, if the B1+ covariates were not included 
in analyses, the association between maternal education 
and whole-brain T1w/T2w ratio was considerably larger 
and significant (B  =  -.00224, SE  =  .00107, t  =  -2.10, 
p  =  .036). However, neither parcel- nor network-level 
associations between maternal education and T1w/T2w 
ratio were significant after multiple comparison correc-
tions, even without inclusion of B1+ covariates. Based on 
ROPE analyses, the majority (>70%) of posterior esti-
mates of the association between maternal education 
and network-level T1w/T2w ratio fell within ROPE inter-
vals considered effectively 0 for all networks. For 18 par-
cels (including right dorsal anterior cingulate cortex and 
left ventral visual cortex), the results were inconclusive. 

Table 1.  Participant demographics.

n %

Sex
  Female 466 50.4
  Male 459 49.6
Race
  Asian 99 10.7
  Black/African American 141 15.2
  Native American/Alaska Native 12 1.3
  Native Hawaiian/Pacific Islander 4 0.4
  White 583 63.0
  More than one race 67 7.2
  Unknown or not reported 19 2.1
Highest parental education level
  Less than high school 76 8.2
  High school 174 18.8
  Some college 283 30.6
  Bachelor’s degree 215 23.2
  Postgraduate degree 125 13.5

Mean SD Min Max

Age 14.4 3.99 8.01 22.0
Income-to-needs ratio 4.95 3.08 0.12 14.7

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00021/2162297/imag_a_00021.pdf by guest on 02 November 2023

https://github.com/dgweissman/hcpd_adversity
https://github.com/dgweissman/hcpd_adversity


6

D.G. Weissman, G.L. Baum, A. Sanders et al.	 Imaging Neuroscience, Volume 1, 2023

While not significantly different from 0, their association 
with log income-to-needs ratio also cannot be consid-
ered practically equivalent to 0.

There were no significant associations between family 
income or maternal education and deviations from nor-
mative T1w/T2w ratio development. The patterns of 
mostly weakly negative associations—in the direction of 
accelerated T1w/T2w ratio development among lower 

income participants—were very similar to the main 
effects of family income (Fig. 1).

As when conducted separately, associations with SES 
measured by a composite measure of SES created by 
standardizing and then averaging parental education and 
log income-to-needs ratio were mostly weak, negative, 
and none were statistically significant after corrections 
for multiple comparisons at the region, network, or whole-
brain level (see Supplemental Materials).

4.  DISCUSSION

Overall, despite having a large sample of almost one 
thousand children, adolescents, and young adults with a 
wide distribution of age and family income, strong data 
acquisition and analysis pipelines, and analyses that 
included bias field corrections, we did not observe signif-
icant associations between family income and T1w/T2w 
ratio. Thus, our inferences are inconsistent with those 
based on an earlier large multisite neuroimaging study. 
However, the overall pattern of uncorrected associations 
between family income and T1w/T2w ratio in the HCP-D 
sample demonstrated a similar spatial pattern across the 
brain to what was observed in relation to an SES com-
posite in a previous study by Norbom and colleagues 

Table 2.  Association between family income and T1w/T2w 
ratio by network.

Cortical network t-statistic p-value

Visual1 -1.14 .26
Visual2 -1.74 .08
Somatomotor -1.26 .21
Cingulo Opercular -0.81 .42
Dorsal Attention -1.15 .25
Language -0.76 .45
Frontoparietal -0.55 .58
Auditory -1.82 .07
Default -0.59 .56
Posterior Multimodal -1.93 .053
Ventral Multimodal 0.25 .8
Orbito Affective 0.74 .46

Note: Family income is operationalized as the natural log of the 
income-to-needs ratio.

Fig. 1.  Associations between family income and T1w/T2w ratio. (A) Maps represent t-statistics across cortical 
parcellations of the association between log income-to-needs ratio and T1w/T2w ratio based on the model: Regional  
T1w/T2w ~ log Income-to-needs-ratio + s(Age) + Sex + Site + “B1+” bias correction covariates, where s(Age) is a 
generalized additive age spline. (B) Maps represent t-statistics across cortical parcellations of the association between log 
income-to-needs ratio and the regional myelin deviation scores based on normative modeling, controlling for participants’ 
actual age.

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00021/2162297/imag_a_00021.pdf by guest on 02 November 2023



7

D.G. Weissman, G.L. Baum, A. Sanders et al.	 Imaging Neuroscience, Volume 1, 2023

(2022). Because both studies rely on large, public data 
sets with their own unique standardized processing  
pipelines, and as the current study was preregistered 
before publication of Norbom et al. (2022), some meth-
odological differences may at least partially account for 
this discrepancy.

First, Norbom and colleagues used a composite mea-
sure of SES, consisting of family income (log total family 
income), parental education, and parental occupation. 
When they examined these measures separately, they 
similarly found no significant association between family 
income and T1w/T2w ratio. Conversely, they found wide-
spread associations between lower parental education 
and greater T1w/T2w ratio across the entire brain 
(Norbom et  al., 2022, Supplementary Figure  2). Finally, 
they found associations between parental occupation 
and T1w/T2w ratio that were concentrated in visual and 
association cortices, thereby contributing to the regional 
specificity seen in the main analyses using the composite 
measure of SES. Thus, the main discrepancy between 
the findings in these analyses and those observed by 
Norbom and colleagues was the absence of widespread 
significant associations between parental education and 
T1w/T2w ratio content in the current study.

Another important methodological difference between 
the present study and the study by Norbom and col-
leagues is the use of correction for B1+ artifact. As noted 
in recent work by Glasser and colleagues (2022), T1w/
T2w ratio maps contain residual radiofrequency transmit 
field (B1+) biases, which may be correlated with variables 
like body-mass-index (BMI), that are, in turn, correlated 
with SES. It is therefore possible that by (appropriately) 
correcting for B1+ artifact, we diminished the strength of 
the associations between family income and T1w/T2w 
ratio that might reflect other factors that are related to 
family income but not cortical myelin content. Indeed, in 
a supplementary analysis examining the association 
between log income-to-needs ratio and whole-brain 
T1w/T2w ratio, excluding the correction for B1+ artifact, 
the observed effect was over twice as large but still only 
marginally significant.

Finally, Norbom and colleagues used vertex-wise data 
instead of a cortical parcellation as was applied in this 
study and controlled for genetic ancestry. Our use of a 
parcellation reduced the number of analyses and there-
fore the penalty for multiple comparisons, which should 
only increase the likelihood of detecting a significant 
association given the pattern of widespread weak asso-
ciations. Controlling for genetic ancestry, as was done by 
Norbom and colleagues, addresses the issue of whether 

inherited characteristics of ancestry contribute to differ-
ences in brain structure. However, no data on genetic 
ancestry are currently available in the HCP-D sample in 
order to include such a variable, and it is our view that 
using individual-level racial categories as variables of 
interest or covariates presumes a biological basis for 
these racial categories that is not supported by evidence 
(see Helms et al., 2005 for extensive discussion of this 
issue). We consider these methodological discrepancies, 
while notable, less likely to have contributed to the dis-
crepancy in the strength of the observed associations 
than the measures of SES used and B1+ artifact correc-
tion. Sensitivity analyses revealed that inclusion of the 
B1+ artifact covariates in analyses substantially reduced 
the effect size estimates of the associations between 
SES indicators and the T1w/T2w ratio.

We also failed to find significant associations between 
low family income and slower T1w/T2w ratio growth 
observed in a previous longitudinal study (Ziegler et al., 
2020). In fact, the nonsignificant findings observed in 
this study were in the direction of accelerated develop-
ment, opposite the direction of those observed in the 
earlier study. Several methodological differences may 
have accounted for these discrepancies, including the 
use of longitudinal methods vs. normative models to 
estimate accelerated or delayed neurodevelopment, the 
use of neighborhood disadvantage vs. individual family 
income and parental education as measures of SES, 
and the use of magnetization transfer vs. T1w/T2w ratio 
to quantify cortical myelin content. It therefore appears 
clear that there is not a broad association between SES 
and cortical myelin development that is robust to these 
conceptual and methodological differences. Further 
investigation would therefore be necessary to clarify 
what aspects of SES, experienced at what ages, may or 
may not shape the trajectory of cortical myelin develop-
ment, and to evaluate whether findings replicate across 
methodologies for quantifying cortical myelination with 
appropriate controls for potential artifact and method-
ological confounds.

This sample, while large, may not be large enough to 
detect significant brain-wide associations between SES 
and T1w/T2w ratio. Brain-wide associations with individ-
ual difference characteristics tend to be quite small, and 
therefore sample sizes in the thousands are required to 
reliably detect them (Marek et al., 2022). Nonetheless, in 
the same Human Connectome Project in Development 
sample reported on here, low maternal education and 
low income were associated with significantly lower cor-
tical thickness across multiple brain networks (Sanders 
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et al., 2022), consistent with earlier findings (Noble et al., 
2015). Therefore, there is some suggestion that the 
association between SES and cortical thickness is dis-
sociable from and stronger than the association between 
SES and cortical myelin as measured by the T1w to  
T2w ratio.

In conclusion, we did not find evidence that family 
income is significantly related to T1w/T2w ratio, suggest-
ing that, in early life, there may not be a broad association 
between SES and cortical myelin development that is 
robust and consistent across measures of SES and 
methodological decisions, even in large samples.
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